Cadence -A Simulator for Human Movement-based Communication Protocols

Harel Berger, Georgetown University Micah Sherr , Georgetown University Adam Aviv , The George Washington University

Location

### Motivation



#### Motivation

- 64% of internet users express concern over governmental censorship (Go Globe).
- The Internet can be disrupted in times of crisis, either due to natural (e.g., natural disasters) or human causes (e.g., war).

# Anti-Censorship Methods

- Alternate names and addresses (DNS)
- Mirrors, Proxies
- Traffic obfuscation
- Sneakernets

#### Sneakernets

#### USB/BLE/NFC/Mesh Wifi



- Encounters between physical devices.
- The most well known uses of sneakernets were in Iraq and Hong Kong, 2014.



# Why Sneakernets?

- Bypassing Internet Censorship
- Anonymity and Privacy
- Limited Digital Footprint
- Reduced Dependency on Online
   Infrastructure



















# **Open Questions**

- When should Alice transfer A to Bob?
- When should Bob transfer A to Charlie?
- How the addressing works?
- How the communication works?



- Simulator for human movements-based sneakernet.
- Utilizes different routing algorithms to simulate message transferring.
- Allows online visualization of a current simulation.



#### Protocol expressiveness

 Simple yet flexible API that enables researchers to concisely specify their routing algorithms.

#### Behavior modeling

 Different types of nodes (participants), including potentially malicious actors are simulated.

#### Mobility modeling

 Simulate messaging in a dynamic network consisting of mobile, human users.

#### Metrics

 Collect statistics throughout the simulation and features an interactive reporting module.

#### Performance

- Operate on computing platforms with varying resources.
- Golang (strong support of parallelism)

#### Repeatability and scientific validity

- Repeatable experiments and deterministic execution.
- Free, open source software

#### Lens

Easy interface for handling lots of different datasets.

```
1 type Lens interface {
2    Init(logger *logger.Logger)
3
4    Import(path string, dataSetName string) error
5
6    // gets the type of location used for this dataset
7    GetLocationType() model.LocationType
8 }
```

#### Lens

- Implemented lenses for:
  - Geolife
  - Cabspotting
  - -MDC
  - Disasters datasets (partial)

# Physics Engine

- Linear movement model
  - Given a node *n* and two consecutive events  $(t_i, \vec{v}_i), (t_j, \vec{v}_j);$ 
    - $\circ t_i < t_j$

 $\circ \vec{v}_x$ : location of the node at time  $t_x$ 

- Cadence infers the location  $\vec{v}_{\alpha}$  of the node at  $t_{\alpha}$ , where  $t_i < t_{\alpha} < t_j$  as:

$$\vec{v}_{\alpha} = \vec{v}_i + (t_{\alpha} - t_i) \frac{|\vec{v}_j - \vec{v}_i|}{t_j - t_i}$$

# **Physics Engine**

- Defines possible encounters between two nodes:
  - Bounded by a conditions file (JSON)

```
1
      "conditions" : [
2
3
        {
          "name" : "distance200m",
4
          "type" : "distance",
5
          "params" : {
6
7
            "dist" : 200.0
8
9
        },
10
          "name" : "probability25",
11
          "type" : "probability",
12
          "params" : {
13
            "prob" : 0.25
14
15
          }
16
17
18
   }
```

# **Physics Engine**

- Defines possible encounters between two nodes:
  - Determines the closest point between any two nodes during a given time period.
  - Checks the conditions for this point. If the conditions are met->encounter.

# Routing

- Address versatility:
  - Unicast
  - Geocast
- Routing is controlled by a Logic engine

# Logic Engine

• Implement the following interface:

```
type Logic interface {
1
2
     Init(log *logger.Logger)
3
     // stores the initial copy of a message at a node
4
5
     PlaceMessage(id model.NodeId, message *Message)
6
7
     // callback function for every time a node finds itself in a new position
     // `b` is the marshalled form of the location
8
9
     NewPositionCallback(nodeid model.NodeId, t model.LocationType, b []byte)
10
     // potentially does a message exchange between nodes when an encounter occurs.
11
12
     HandleEncounter(encounter *model.Encounter,
13
          messageDBChan chan *model.MessageDB,
          receivedmessageDBChan chan *model.DeliveredMessageDB) float32
14
15
     // ... supporting routines omitted for brevity ...
16
17
   }
```

# Logic Engine

- PlaceMessage Bootstraps messaging by specifying the origination of a message.
- NewPositionCallback is called whenever a node is in a new position.
  - Useful for simulating certain protocols (e.g., Aviv et al.'s HumaNets protocol).
- HandleEncounter governs how an encounter should be handled.

# Logic Engine (Flooding)

**PlaceMessage**: put a message in a node's queue.

NewPositionCallback: do nothing HandleEncounter:



# Logic Engine

- General factors
  - Distance
  - Probability of an Encounter (global or per message)
  - Connection Duration
- Device factors
  - Battery Consumption
  - Memory Usage

# **Behavior Modeling**

- Attacker nodes
  - Flooder
  - Dropper

```
type Attacker interface {
1
2
     Init(log *logger.Logger)
3
     // runs an attack of the attacker node, using its queue of messages,
4
     // during an encounter
5
     Attack(encounter *model.Encounter, attacker model.NodeId,
6
7
        attackerMap *sync.Map)
8
     // ... supporting routines omitted for brevity ...
9
10
```

# **Behavior Modeling**

#### Flooder

- Injects spurious messages whenever it meets a new node.
- A sufficiently large flooder population can create a version of the *Coremelt attack*.



# **Behavior Modeling**

#### Dropper

- Does not pass any message to any node and instead drops every message it receives.
- Creates a typical DOS attack.



# **Reporting Module**

- A web service
- Allows researchers to run various reports and plot.
- Currently supported reports include plots of delivery rates, contact rates, and node lifetimes.

# **Reporting Module**

- Adding a new report requires registering a unique URL (e.g., "/avg-throughput") and an event handler.
- Formatting reports is accomplished through Golang's built-in HTML template language.

# **Reporting Module**

#### Messages Transfer Times



### Future Work

- Optimization
  - Running dense datasets require enormous computational resources

 Moving to Encounter-based simulator instead of events based.

- Relational DB backend (i.e., MySQL)
  - Moving to memory-backed data stores (e.g., Redis).

### Future Work

- Protocols
  - New routing protocols
  - Currently, the simulator supports only a single configuration per execution.

○ Different protocols in parallel, "parallel worlds".

 Documentation of new routing protocols and node behaviours.

### Summary

- Cadence is a simulator for human movement-based communication.
- It supports different datasets, routing algorithms, addresses and node behaviors.
- Cadence is an ongoing project, and will be extended in the future.

### Availability

 Cadence is available as free and opensource software and can be downloaded from https://github.com/GUSecLab/cadence.

#### Acknowledgments

- This material is based upon work supported by DARPA under Contract No. FA8650-22-C-6424.
- Any opinions, findings, conclusions, or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of DARPA.

# Any Questions?

