BGPy:
The BGP Python Security Simulator

By: Justin Furuness, Cameron Morris, Reynaldo Morillo, Dr. Amir Herzberg, Dr. Bing Wang

(Affiliated with the University of Connecticut)

Background

e The internetis from a high level,
a directed acyclic graph of over
70k nodes, known as
Autonomous Systems, or ASes

for short
o These ASes route traffic for
ISPs, CDNs, Organizations, etc
o They can be identified by their
AS Number, or ASN for short

02 github.com/jfuruness/bgpy

{16

1,5,8,4,777

B

(For most specific prefix only)

ER SUCCESS &

10

‘== VICTIM SUCCESS =

1

#* DISCONNECTED %

0

24

1, 666

[n6[s.8.4,777] =
24| 51,666 |@

162, 5,8,4,777

@

16,

10,9,777 |

24

10, 5, 1, 666

8,5, 1, 666

(035_valley_free_ex_bgp Ground Truth)

[ns] o7

ne|1,9,777| =

«

/249, 10, 5, 1, 666

ne| 4,77

«

/24 |4, 8,5, 1, 666

Buis
(BGP Simple)

Local RIB

777

1777, 4,8, 5, 1, 666

AS Relationships

® For our simulations, we focus on
two of the most prevalent type
of connections between ASes:
o Provider -> Customer

connections
m Customers pay
provider

o Peer <-> Peer connections
m Traffic flows freely
o Sibling relationships not
included

03 github.com/jfuruness/bgpy

{16

1,5,8,4,777

(For most specific prefix only)

ER SUCCESS &

10

‘== VICTIM SUCCESS =

1

#* DISCONNECTED %

0

1, 666

«]

[n6[s.8.4,777] =
24| 51,666 |@

16(2,5,8,4,777

& |

16,

10,9,777 |

24

10, 5, 1, 666

8,5, 1, 666

(035_valley_free_ex_bgp Ground Truth)

[ns] o7

ne|1,9,777| =

«

/249, 10, 5, 1, 666

ne| 4,77

«

/24 |4, 8,5, 1, 666

Buis
(BGP Simple)

Local RIB

777

1777, 4,8, 5, 1, 666

Announcements

® ASes forward traffic from one
another. While announcements
have many attributes, from a
high level we can think of them
as:

o Prefix (containing a block of
IP addresses), such as
1.2.3/24

o Origin (the ASN that created
the announcement)

o AS Path (The path that the
announcement took to
reach it’s destination

(For most specific prefix only)
CER SUCCESS @ | 10
'~ VICTIM SUCCESS = | 1

/16| 10,9,777

« @nl“

#* DISCONNECTED % 0

6

1,5,8,4,777

1, 666

12410, 5, 1, 666

65,8477 = | 16| 84,777 | =
24| 51,666 |@ /24(8,5,1,666 | @

16]2,5.8 4, 777]

L

116]3, 8,4, 777 | B

(035_valley_free_ex_bgp Ground Truth)

ne|1,9,777| =

-
ne| 9,777

« ¢

/249, 10, 5, 1, 666

Ao

/244,8,5,1,666 | @&

Buis
(BGP Simple)

Local RIB

777

777, 4,8, 5, 1, 666

(For most specific prefix only)
ER SUCCESS W | 10

Valley Free Routing el e R

#* DISCONNECTED # 0
/24110, 5,1, 666 | @

e \alley Free Routing is the default
in our simulations, similar to
prior works. This selects the best

[ns]s.sa,m]=| | 6] 8,4,777 | = | [n6] o777 =
announcement in order to EEECaEy . gl A sl
maximize profit. ;

O customers > peers >
prOViderS \ [n6]rs 847 16]2,5.8,4,777| = | ns] a1 |2
24 1,666 |@ 24| 2,666 |@ /24 (4,8,5,1, 666 | @

o Shortest AS Path
o Tiebreakers
m Default to lowest ASN

S
(BGP Simple)
Local RIB
777
[777, 4, 8, 5, 1, 666

05 github.com/jfuruness/bgpy

(035_valley_free_ex_bgp Ground Truth)

Export Policy

e Export Policy:
© Announcements received
from customers are sent to
all
© Announcements received
from peers and providers
are sent to customers @

14| 1,666

06 github.com/jfuruness/bgpy

(For most specific prefix only)
ER SUCCESS W | 10
%= VICTIM SUCCESS & | 1

#* DISCONNECTED # 0

|

(116]5,8,4,777| = |
/24| 51,666 | @

116|2,5,8,4,777| = |
/z4| 2, 666 |'

12410, 5, 1, 666

(035_valley_free_ex_bgp Ground Truth)

ne1,9,777| =

ne| o777 | =
/2419, 10, 5, 1, 666 | &

(BGP Simple)

Local RIB

777

41777, 4,8, 5, 1, 666

BGP Hijacking

e How does data plane traffic flow
work if you have multiple
prefixes for the same IP address?

o Most specific prefix is
chosen

o This allows for BGP hijacks

o This specific example is of a
subprefix hijack

07 github.com/jfuruness/bgpy

(For most specific prefix only)

ER SUCCESS @ | 10

"= VICTIM SUCCESS = | 1 i’ —_—
— \ [16] 109,777

#* DISCONNECTED # 0

24|10, 5,1, 666

{6

ssem[=|)\ [me[mam

5.1,666 | @ /248, 5,1, 666

16(2,5,8,4,777(= |
24| 2,666 v

(035_valley_free_ex_bgp Ground Truth)

] o7

ne|1,9,777| =

« |

/2419, 10, 5, 1, 666

ne| 47171

«

/24 |4, 8,5, 1, 666

i)
(BGP Simple)

Local RIB

777

1777, 4,8, 5, 1, 666

ROV

e From a very high level, Route
Origin Validation (ROV) can
declare announcements as valid
or invalid

e Here AS 8 deploys ROV

e Since ROV declares the /24
subprefix invalid, AS 8 drops the
/24 prefix. This protects:

o AS3
o ASS8
o AS4

08 github.com/jfuruness/bgpy

6

1,5,8,4,777

—

=

(For most specific prefix only)

24

1, 666

KER SUCCESS W | 7
'~ VICTIM SUCCESS =~ |4 e —
16| 10,9,777 | =
* DISCONNECTED * [0
/24110, 5,1, 666 | &
8
(ROVSimple)
Local RIB

/165,84, 777 |2
24| 51,666 | @

1162, 5,8,4,777
24| 2,666

&« <)

/16|8, 4, 777| =

3
(BGP Simple)

Local RIB

16|3,8,4,777| &

(036_valley_free ex_rov Ground Truth)

n6|11,9,777| =

ne| 9,777

1249, 10, 5, 1, 666

|yl

4
(BGP Simple)
Local RIB
16 | 4,777 | =

i)
(BGP Simple)

Local RIB

777

777, 9, 10, 5, 1, 666

(For most specific prefix only)

[svcess @
'~ VICTIM SUCCESS = 4 — ImﬂlfIB’

f161]10,9, 977 [1) —

#* DISCONNECTED % nel11,9,777 =

/24110, 5,1, 666 | &

-

=)

® Thisis a system test included in
BGPy

8

O Easy to write Loct R s oo
N16(5,8,4,777| = ne| 9,711 |=
. — = n6|s,4,777] % E -
o Easytoview mlrele] / N\ L 5,105, 1.566| @

o Easy to verify ;
® On amuch larger scale, BGPy is . :

. Local RIB| [] = (BGP Simple) (BGP Simple)

Open source and can SlmUIate N6|1,5,8,4,777| = 16 (2,5,8,4,777 = Local RB = MRIB?_,,

AT L T 16 |W n6(3,8,4,777| @ ne6[a, 177

different attacks and defenses
that are partially adopted
® The results can be compared

with well defined benchmarks .
e It’s efficient enough to be run on e R

a laptop and is easy to extend

(036_valley_free ex_rov Ground Truth)

PeerROV

® PeerROV is an ROV variant that
only filters peers

e Here AS 8 deploys Peer ROV

® Peer ROV does not protect any
ASes in this case

10 github.com/jfuruness/bgpy

1,5,8,4,777|

(For most specific prefix only)

ER SUCCESS @ | 10
‘= VICTIM SUCCESS & | 1
#* DISCONNECTED #* 0

/24

1, 666

Ol

14| 51,666 | @

ns[as s am= |
24 2, 666 v

e

T e

16| 10,9,777 | |

/24|10, 5, 1, 666

hs] w a7 =

124 [8,5,1,666 | @

......

(037 valley free ex rov Ground Truth)

ne|11,9,777| =

(] o

/2419, 10, 5, 1, 666

ne| a1 [T

124]4,8,5, 1,666 | @

SIS
(BGP Simple)

Local RIB

777

4]777,4,8,5, 1, 666 | @

Results

This is an example of a graph
included by default in BGPy
® Here we are comparing ASes th
adopting ROV vs PeerROV
e For example, at 40% adoption:
o About 60% of ROV ASes
are hijacked
o Almost all PeerROV ASes
are hijacked
e We also track
o Percent Disconnected

o Percent Successfully
Connected

Data Plane % Hijacked

100

80 -

60 -

40 1

20 1

b\——-—‘f — = . 2
e —4— PeerROV adopting
. --=- ROV adopting
\‘{-;\\\‘
0 20 40 60 80

Percent Adoption

BGPy: The Simulation Framework

The Simulation Framework is a wrapper around the Simulation Engine that facilities the
comparison of multiple security policies against attack scenarios at partial adoptions

Simulation Framework
| Announcements

Simulation Scenario PrefixHijack (attacker’s and victim’s)
Percent_adoptions BaseASCls
Scenarios AdoptASCls .
Num_trials Num_attackers o . —p Adoptlng ASes
Propagation_rounds Num_victims (BUI"Z N Scenarlos)
Parse_cpus Attacker_asns
python_hash_seed victim_asns
, Local RIBs

UserScenario * (At each AS)
Graphs Simulation Metrics
Hijacked, Disconnected, Connected (CSV)

12 github.co uruness/bgpy

endine BGPy: The Simulation

= SimulationEngine()

metric_tracker = MetricTracker()
v for trial in range(num_trials): Framework (PseUdOCOde)

1
2
3
4, for scenario in scenarios:

5 # Select attacker(s) and victim(s), kept consistent across scenarios
6

7

8

9

scenario.select_attacker_and_victim(engine)
Select Adopting ASes, kept consistent across scenarios
Also sets Adopting ASes, which varies from scenario to scenario
scenario.set_adopting_ases(engine)
10 # Seeds the attacker(s) and victim(s) announcement in the engine
11 scenario.seed_attacker_victim_announcements(engine)
12 # Propagates announcements throughout the AS topology
13 engine.run()
14 # Records metrics for graphing later
15 metric_tracker.analyze(engine)
16 # Remove announcements from the graph
17 engine.clear()

v def

1
2
3
4
5
6
7
8
9

v class SubprefixHijack(Scenario):
_get_announcements(self, *args, **kwargs):

anns = list()
anns.append(
self.scenario_config.AnnCls(
prefix=Prefixes.PREFIX.value,
as_path=(victim_asn,),
roa_valid_length=True,
roa_origin=victim_asn,

anns.append(

self.scenario_config.AnnCls(
prefix=Prefixes.SUBPREFIX.value,
as_path=(attacker_asn,),
roa_valid_length=False,
roa_origin=victim_asn,

)

return tuple(anns)

BGPy: Scenario

The Scenario controls attacker and

defender strategies, including:

® Which ASes can be chosen as
attacker/victim

e What announcements those ASes
announce

e What routing policies are deployed
across the adopting ASes

e E[Etc

BGPy: Simulation

sim = Simulation(

v percent_adoptions=(The Simulation object controls all
SpecialPercentAdoptions.ONLY_ONE, aspects of the simulation
8.1,

= e Trials, CPUs, etc
@:4: ® Percent Adoptions
0.8, ® Scenarios
SpecialPercentAdoptions.ALL_BUT_ONE,

O 00 O U B WN -

)’
10 . scenario_configs=(
ScenarioConfig(ScenarioCls=SubprefixHijack, AdoptASCls=ROVSimpleAS),
ScenarioConfig(ScenarioCls=SubprefixHijack, AdoptASCls=PeerROVSimpleAS),
),
output_dir=Path("~/Desktop/paper_graphs").expanduser(),
num_trials=1000,
parse_cpus=12,
)

sim.run()

BGPy: ROV AS

ROV AS is an example of how you would
subclass the default BGP AS
® Most extensions are fairly simple
e Here we merely extend the valid
announcement check (which
checks for loops in the AS path)

v class ROVAS(BGPAS):
def _valid_ann(self, ann: Ann) -> bool:
IT ROA is invalid, ROV says announcement is invalid
if ann.invalid_by_roa:
return False
If ROA i1s valid, determine validity with BGP
else:
return super(ROVAS, self)._valid_ann(ann)

<

<

<

O NJNO U B WIN -

BGPy: Peer ROV AS

Peer ROV is the same as ROV, except it
only filters announcements from peers

Again fairly straightforward in BGPy

1., class PeerROVAS(BGPAS):

2y def _valid_ann(self, ann: Ann) -> bool:

3 # IT ROA i1s invalid, ROV says announcement is invalid

4 # For PeerROV, only filter by Peers

5 5 if ann.invalid_by_roa and ann.recv_relationship == Relationships.PEERS:
6 return False

7 # If ROA 1s valid, determine validity with BGP

8. else:

9 return super(PeerROVAS, self). valid_ann(ann)

BGPy: Announcement

Sometimes it’s desired to add extra
attributes to announcements

Here is an example for ROV++, where
we added a few attributes

1 @dataclass(frozen=True, slots=True)
2, class ROVPPAnn(Announcement):

3 holes: tuple[str] = ()

4 blackhole: bool = False

5 # V3 attributes

6 preventive: bool = False

7 attacker_on _route: bool = False

BGPy: The Simulation Engine

Abstracts away packet-level and intra-domain details to
perform BGP simulations by propagating AS topology ROV

(Caida Serial-2) (Many data sources)

\/

Simulation Engine

announcements across the entire AS topology.

Announcements >

(attacker’s and victim’s)

BGP AS ROV AS
Peers

Providers
Adopting ASes — | Customers
ROV Confidence Peer ROV AS
Local RIB
RIBs In

Local RIBs RIBs Out
(At each AS)

UserDefinedAS

BGPy: The Simulation Engine (ROV Data)

e Optionally, real world ROV data can be used in the simulations
e Data Sources included by default:

o Rowv.rpki.net

o Isbgpsafeyet.com

o Revisiting RPKI Route Origin Validation on the Data Plane

20 github.com/jfuruness/bgpy

BGPy: The Simulation Engine (Propagation)

e First, announcements are inserted at the victim(s) and attacker(s)
e Then, announcements are propagated throughout the AS topology:
o First from customers to providers
o Second from peer to peer
o Third from providers to customers
e We converge in O(E) time in a single round of propagation
o This allows us to write BGPy in Python and still be able to run it on a laptop
o If users would like to propagate for more than 1 round, they can set the
number of rounds in a parameter

21 github.com/jfuruness/bgpy

BGPy: Future Work

We just released a new version with some improvements, and will

continue to iterate

® The next big leap forward will be likely using rust bindings with PyO3 for
massive speed improvements

® More real world data can be added to make simulations more realistic

o IXP data

o BGP Communities
o AS Blacklists

o etc

22 github.com/jfuruness/bgpy

O

O

O

O

O

Thank you! Questions?

e Contact Info:

23 github.com/jfuruness/bgpy

Justin Furuness: jfuruness@gmail.com

Cameron Morris: cameron.morris@uconn.edu

Reynaldo Morillo: reynaldo.morillo@uconn.edu

Dr. Amir Herzberg: amir.herzberg@gmail.com

Dr. Bing Wang: bing@uconn.edu

e Link to BGPy: github.com/jfuruness/bgpy

mailto:jfuruness@gmail.com
mailto:cameron.morris@uconn.edu
mailto:reynaldo.morillo@uconn.edu
mailto:amir.herzberg@gmail.com
mailto:bing@uconn.edu

