
BGPy:
The BGP Python Security Simulator

By: Justin Furuness, Cameron Morris, Reynaldo Morillo, Dr. Amir Herzberg, Dr. Bing Wang

(Affiliated with the University of Connecticut)

Background
● The internet is from a high level,

a directed acyclic graph of over

70k nodes, known as

Autonomous Systems, or ASes

for short
○ These ASes route traffic for

ISPs, CDNs, Organizations, etc

○ They can be identified by their

AS Number, or ASN for short

02 github.com/jfuruness/bgpy

AS Relationships
● For our simulations, we focus on

two of the most prevalent type

of connections between ASes:

○ Provider -> Customer

connections

■ Customers pay

provider

○ Peer <-> Peer connections

■ Traffic flows freely

○ Sibling relationships not

included

03 github.com/jfuruness/bgpy

Announcements
● ASes forward traffic from one

another. While announcements

have many attributes, from a

high level we can think of them

as:

○ Prefix (containing a block of

IP addresses), such as

1.2.3/24

○ Origin (the ASN that created

the announcement)

○ AS Path (The path that the

announcement took to

reach it’s destination
04 github.com/jfuruness/bgpy

Valley Free Routing
● Valley Free Routing is the default

in our simulations, similar to

prior works. This selects the best

announcement in order to

maximize profit.

○ customers > peers >

providers

○ Shortest AS Path

○ Tiebreakers

■ Default to lowest ASN

05 github.com/jfuruness/bgpy

Export Policy
● Export Policy:

○ Announcements received

from customers are sent to

all

○ Announcements received

from peers and providers

are sent to customers

06 github.com/jfuruness/bgpy

BGP Hijacking
● How does data plane traffic flow

work if you have multiple

prefixes for the same IP address?

○ Most specific prefix is

chosen

○ This allows for BGP hijacks

○ This specific example is of a

subprefix hijack

07 github.com/jfuruness/bgpy

ROV
● From a very high level, Route

Origin Validation (ROV) can

declare announcements as valid

or invalid

● Here AS 8 deploys ROV

● Since ROV declares the /24

subprefix invalid, AS 8 drops the

/24 prefix. This protects:

○ AS 3

○ AS 8

○ AS 4

08 github.com/jfuruness/bgpy

BGPy
● This is a system test included in

BGPy

○ Easy to write

○ Easy to view

○ Easy to verify

● On a much larger scale, BGPy is

open source and can simulate

different attacks and defenses

that are partially adopted

● The results can be compared

with well defined benchmarks

● It’s efficient enough to be run on

a laptop and is easy to extend
09 github.com/jfuruness/bgpy

PeerROV
● PeerROV is an ROV variant that

only filters peers

● Here AS 8 deploys Peer ROV

● Peer ROV does not protect any

ASes in this case

10 github.com/jfuruness/bgpy

Results
● This is an example of a graph

included by default in BGPy

● Here we are comparing ASes that

adopting ROV vs PeerROV

● For example, at 40% adoption:

○ About 60% of ROV ASes

are hijacked

○ Almost all PeerROV ASes

are hijacked

● We also track

○ Percent Disconnected

○ Percent Successfully

Connected
11 github.com/jfuruness/bgpy

BGPy: The Simulation Framework
The Simulation Framework is a wrapper around the Simulation Engine that facilities the

comparison of multiple security policies against attack scenarios at partial adoptions

Adopting ASes

Local RIBs
(At each AS)

Simulation Framework

Scenario
BaseASCls
AdoptASCls
Num_attackers
Num_victims
Attacker_asns
victim_asns
…

PrefixHijack

(Built in Scenarios)

UserScenario

Graphs
Hijacked, Disconnected, Connected

Simulation
Percent_adoptions
Scenarios
Num_trials
Propagation_rounds
Parse_cpus
python_hash_seed
…

Simulation Metrics
(CSV)

Announcements
(attacker’s and victim’s)

12 github.com/jfuruness/bgpy

BGPy: The Simulation
Framework (PseudoCode)

13 github.com/jfuruness/bgpy

BGPy: Scenario
The Scenario controls attacker and
defender strategies, including:
● Which ASes can be chosen as

attacker/victim
● What announcements those ASes

announce
● What routing policies are deployed

across the adopting ASes
● Etc

14 github.com/jfuruness/bgpy

BGPy: Simulation
The Simulation object controls all
aspects of the simulation
● Trials, CPUs, etc
● Percent Adoptions
● Scenarios

15 github.com/jfuruness/bgpy

BGPy: ROV AS
ROV AS is an example of how you would
subclass the default BGP AS
● Most extensions are fairly simple
● Here we merely extend the valid

announcement check (which
checks for loops in the AS path)

16 github.com/jfuruness/bgpy

BGPy: Peer ROV AS
Peer ROV is the same as ROV, except it
only filters announcements from peers

Again fairly straightforward in BGPy

17 github.com/jfuruness/bgpy

BGPy: Announcement
Sometimes it’s desired to add extra
attributes to announcements

Here is an example for ROV++, where
we added a few attributes

18 github.com/jfuruness/bgpy

BGPy: The Simulation Engine
Abstracts away packet-level and intra-domain details to

perform BGP simulations by propagating

announcements across the entire AS topology.

Simulation Engine

AS topology
(Caida Serial-2)

BGP AS
Peers
Providers
Customers
ROV Confidence
Local RIB
RIBs In
RIBs Out
…

ROV AS

Peer ROV AS

UserDefinedAS

Adopting ASes

Local RIBs
(At each AS)

ROV
(Many data sources)

Announcements
(attacker’s and victim’s)

19 github.com/jfuruness/bgpy

BGPy: The Simulation Engine (ROV Data)

● Optionally, real world ROV data can be used in the simulations

● Data Sources included by default:

○ Rov.rpki.net

○ Isbgpsafeyet.com

○ Revisiting RPKI Route Origin Validation on the Data Plane

20 github.com/jfuruness/bgpy

BGPy: The Simulation Engine (Propagation)

● First, announcements are inserted at the victim(s) and attacker(s)

● Then, announcements are propagated throughout the AS topology:

○ First from customers to providers

○ Second from peer to peer

○ Third from providers to customers

● We converge in O(E) time in a single round of propagation

○ This allows us to write BGPy in Python and still be able to run it on a laptop

○ If users would like to propagate for more than 1 round, they can set the

number of rounds in a parameter

21 github.com/jfuruness/bgpy

BGPy: Future Work

● We just released a new version with some improvements, and will

continue to iterate

● The next big leap forward will be likely using rust bindings with PyO3 for

massive speed improvements

● More real world data can be added to make simulations more realistic
○ IXP data

○ BGP Communities

○ AS Blacklists

○ etc
22 github.com/jfuruness/bgpy

Thank you! Questions?

● Contact Info:

○ Justin Furuness: jfuruness@gmail.com

○ Cameron Morris: cameron.morris@uconn.edu

○ Reynaldo Morillo: reynaldo.morillo@uconn.edu

○ Dr. Amir Herzberg: amir.herzberg@gmail.com

○ Dr. Bing Wang: bing@uconn.edu

● Link to BGPy: github.com/jfuruness/bgpy

23 github.com/jfuruness/bgpy

mailto:jfuruness@gmail.com
mailto:cameron.morris@uconn.edu
mailto:reynaldo.morillo@uconn.edu
mailto:amir.herzberg@gmail.com
mailto:bing@uconn.edu

