
User Profiling and Vulnerability Introduction Prediction
in Social Coding Repositories:

A Dynamic Graph Embedding Approach
Agrim Sachdeva, Ben Lazarine, Hongyi Zhu, Sagar Samtani

Indiana University, University of Texas at San Antonio

Monday, August 7, 2023

*This material is based upon work supported by the National Science Foundation under
Grant No. NSF OAC-1917117 (CICI)*

Introduction: Software Vulnerabilities Due to Human Error

• Introduction of several vulnerabilities is caused by human error
• Most software vulnerabilities are mistakes, not malicious attacks 1

• Critical-severity vulnerability make it through code review just as easily as
low-severity ones 2

• Vulnerabilities typically go undetected for 218 weeks (over four years)
before being disclosed (Fig. 1)

• Context: Open Source and GitHub
• Open-source code is vital to the global economy; services and technology

from banking to healthcare; > $100 billion impact (Fig. 1)

• Many scientific CIs and their users host and share their research source
code on Social Coding Repositories (SCR) such as GitHub

• Susceptible due to distributed development; evolving risks; zero-day
vulnerabilities

• “Shifting left” is an important mitigation strategy
• Early detection, or the prediction of the introduction of vulnerabilities

by users

2

Figure 1.
Lifecycle of a
vulnerability 3

Sources: 1: https://www.synopsys.com/software-integrity/resources/analyst-reports/open-source-security-risk-analysis.html
 2: https://blog.gitguardian.com/state-of-secrets-sprawl-2021/
 3. State of the Octoverse, GitHub, 2020

https://www.synopsys.com/software-integrity/resources/analyst-reports/open-source-security-risk-analysis.html
https://blog.gitguardian.com/state-of-secrets-sprawl-2021/

3

Code-first
• DevSecOps-enabled: Integrated vulnerability scanning or detection systems
• Dependabot, Dependency Review, Dependency Graph, CodeQL and Secret Scanning
Identify vulnerabilities after they have been committed to code
Work at the repository-level, and do not focus on users or provide feedback
Require extensive configuration

User-first
• Developer security awareness training

More effective in reducing vulnerabilities than embedded tools in interfaces (Sedova, 2017)
Quickly loses efficacy if non-targeted
Causes training fatigue

Shift from detecting vulnerabilities in code after they have been introduced to predicting
user errors and prevent introduction of vulnerabilities

Current Solutions

Example GitHub User

Repositories
can be

“starred”

Example repository

Contribution Heatmap

Fig. 2. A GitHub Profile

Profile Picture

Username

Users
can be

“followed”

5

Vulnerability Introduction Prediction

Example
User 2

Example
User 3

Example
User 1

clank rtwo
django

Hardcoded
secret

tim
e 1

Cross site
scripting

tim
e
2

Outdated
dependencie

s

time3

Vulnerabilities can be introduced and
propagated by users

Vulnerability introduction can be impacted by:
• Direct and indirect exposure
• Propagation of knowledge and information
between developers

Objective: Predict the introduction of a
vulnerability by a user into a repository.

Can enable proactive risk management, e.g.,
targeted security awareness trainings

KNOWLEDGE
FLOW

Fig. 3. Example Vulnerability Introduction Prediction
within the organization Cyverse

6

• Key Observations:
1. Most recent studies do not focus on prediction of vulnerabilities, or incorporate a vulnerability assessment on code, overlooking

the incidence and nature of vulnerabilities.
2. Although GitHub as a time-evolving interaction network, studies do not capture the temporal dynamics need to be captured

and modelled, reducing the accuracy of the data representation, and therefore, the underlying phenomenon.
3. The results of vulnerability analysis contains valuable information such as severity levels, which most studies omit.

Year Author Platform/ Dataset Focus Method User
Profiling

Vulnerability
Assessment

Temporal
Dynamics

2022 Shahid et al. Network Metadata Hybrid CNN + Cookie Analysis CNN Yes No No

2022 Zerouali et al. GitHub: npm, RubyGems Vulnerability dependency networks Empirical No Yes Yes

2021 Shaji et al. GitHub: organizations Non-intrusive vulnerability detection Probabilistic model No Yes No

2021 Rabheru et al. GitHub: Wordpress Novel vulnerability detection GRU + GCN No Yes No

2021 Mazeura-Rozo
et al.

Source Code
Representations

Comparing DL to ML models, e.g.,
Google’s AutoML

Empirical No Yes No

2020 Lazarine et al. GitHub Cluster attributes and vulnerabilities TADW Yes 4 scanners No

2020 Zhang et al. GitHub Malicious blockchain repository
detection

HIN No 3 scanners No

2019 Gong et al. GitHub Detection of malicious online accounts Phased LSTM Yes No No

2019 Meli et al. GitHub Data leakage Regular Expressions No 1 scanner No

Table 1. Literature Review of studies that use GitHub data for vulnerability analysis or modeling users
Note: CNN: Convolutional Neural Network, TADW: Text Attributed Deep Walk, HIN: Heterogenous Information Network, LSTM: Long short-term memory, GRU: Gated Recurrent Unit, GCN: Graph

Convolutional Network

Literature Review: Vulnerability Management for SCR

Literature Review: Dynamic Graph Representation Learning

7

Dynamic Graph Representation Learning

Evenly-Spaced Snapshot Sequence Unevenly-Spaced Snapshot Sequence

Temporal Random Walk
Temporal Point Processes

Time-Encoded Sequential Models
Deep Continuous-Time Processes

Graph Summarization
Matrix Factorization

RBM-Based Temporal Models
RNN-Based Temporal Models

Attention-Based Temporal Models

GitHub as a time-evolving interaction network wherein individual edges and nodes are inserted or deleted over
time in a continuous manner.

Based on the characteristics of our data, i.e., a time-stamped dynamic interaction network, we review dynamic
graph representation learning techniques.

By representing users and repositories as nodes, and vulnerabilities as links between the nodes, the task of link
prediction would help us predict the introduction of vulnerabilities

Figure 4. Dynamic Graph Representation Learning

user1

user2

user3 rtwo

atmosphere

clank

Literature Review: Overview of Continuous Propagation and Evolution (CoPE)

Figure 5. CoPE Forward Pass (Blue, Black), JODIE (Grey)

user1

user2

user3 rtwo

atmosphere

clank

(𝑢𝑘-1, r𝑘-1 , 𝑡𝑘-1) (𝑢𝑘, r𝑘 , 𝑡𝑘) (𝑢𝑘+1, r𝑘+1 , 𝑡𝑘+1)

A𝑘-1 A
𝑘

𝑋 𝑡!"#$ 𝑋 𝑡!$𝑋 𝑡!"

Jump

𝑋 𝑡!$#$

User embeddings: vulnerability propagation score/ propensity to introduce vulnerabilities
Repository embeddings: Risk level, or vulnerability level

The propagation of information is modeled as non-linear node dynamic evolution between
interactions, which captures the knowledge and communication between users that impacts the
introduction of a vulnerability.

Information
Propagation

1. Continuous Propagation 2. Discrete Update

Sequence Methods Algorithm Contribution Discrete/
Continuous

Information
Propagation

Concurrent
Interactions

Authors Year

Evenly-
Spaced

Snapshot
Sequence

Dynamic Latent
Space Models

DSNL Forward-backward algorithm on the Markov chain over timesteps Discrete No No Sarkar and
Moore

2005

Incremental SVD TIMERS Set the restart time to reduce accumulated error
Discrete

No No Zhang et al. 2018

Unevenly-
Spaced

Snapshot
Sequence

Random Walk
Based Methods

CTDNE Temporal random walks that contain a sequence of edges in order Continuous No No Nguyen et al. 2018

DNE Extension for the Skip-gram based network embedding methods Discrete No No Du et al. 2018

DynamicTriad Learn dynamic embeddings by modeling the triadic closure Discrete No No Zhou et al. 2018

Graph Neural
Network
Methods

DyRep Temporal attention layer to capture the neighbors' interactions Continuous No No Trivedi et al. 2019

JODIE Coupled recurrent neural network model; learns embedding
trajectories of two types of nodes (e.g. users and items)

Continuous No No Kumar et al. 2019

CoPE Modeling continuous propagation and evolution Continuous Yes Yes Zhang et al. 2021

TGAT Attention layer to efficiently aggregate temporal-topological
neighborhood features

Continuous No Yes Xu et al. 2020

TGN “Memory” module to update node embeddings Continuous No Yes Rossi et al. 2020

9

Table 2. Dynamic Graph Representation Learning Methods; Note: DSNL: Dynamic Social Network In Latent Space; TIMERS: Theoretically Instructed Maximum-Error-bounded Restart of
SVD; CTDNE: Continuous-Time Dynamic Network Embeddings; GNN: Graph Neural Networks (GNNs); DyRep: Dynamic Representation; CoPE: Continuous Propagation and Evolution

Literature Review: Dynamic Graph Representation Learning

• Key Observations:
1. Prevailing dynamic graph representation Learning for continuous-time interaction graphs are neural-network

based methods, which can further be classified into RNN-based (DyREP, JODIE, CoPE), or Attention-based
(TGAT, TGN)

2. CoPE can capture the evolution of nodal embeddings based on the propagation of information, i.e., the impacts
of the users on neighboring users and repositories between interactions

Research Questions

Extant security education, training, and awareness (SETA) research does not comment on open-
source software security awareness trainings, or the timing of the training to be delivered. The
personalization and the timing of delivery are important to security training outcomes.

Baseline link prediction using dynamic graph methods does not consider the severity of the
vulnerabilities when they spread, or the relative influence of users.

Based on these research gaps, we pose the following research questions:

1. How can we predict the introduction of vulnerabilities by users into repositories while accounting
for information propagation?

2. How can we adapt dynamic graph link prediction methods to incorporate rich feature sets for users,
repositories, and vulnerabilities, and capture the relative influence of high-risk repositories and actors?

10

Research Question

Shortcomings in existing approaches necessitate the need for personalized and targeted training

The prediction of vulnerabilities in source code will allow the creation of risk profiles,
and enable proactive and personalized security awareness training.

How can we extend and adapt CoPE to incorporate rich feature sets for users, repositories, and
vulnerabilities, and capture the relative influence of high-risk repositories and actors?

11

3. Proposed SeCoPE
Model

12

Figure 6. Research Design and Testbed

Research Design

4. Evaluation

Experiment 1
seCoPE vs.
RNN-based

Methods

Experiment 2
seCoPE vs.

Attention-based
Methods

Weighted
Continuous

Propagation Unit

Nodal Embedding
Generation

Link Prediction

1. Data Collection

Vulnerability
Scanning

Repository
Collection

176 users, 77 repos,
3326 vulnerabilities

2. Graph Formulation

Feature Extraction
User, Repository,

Interaction

G = (U, R, E)
E: Vulnerability

Introduction
Features: 𝒇(𝑢𝑘, r𝑘, 𝑡𝑘)

Research Design: Data Collection

13

NCAR: Federally funded R&D center for climate science, atmospheric chemistry, solar-terrestrial
interactions; founded in 1956; collaborates with 115 universities; 176 users, 77 repositories, 3326
vulnerabilities

We selected four open-source vulnerability assessment scanners based on language categories of
vulnerabilities they scan for, languages, usability and age, i.e., Bandit, Flaw Finder, Gitrob, Trufflehog

Table 3. Key Vulnerabilities Returned from Scanners

Type Sub-category Vuln. Description Example Bandit Flaw Finder Gitrob Trufflehog

Secret

Secret
Secret A potential password/key 739b6afec22ff801a132fc89200a0614953211cd Yes No Yes Yes
Password Word password found irods://user:pass@host:port/destination No No Yes Yes

Cryptography Weak crypto. Insufficient crypto. Method iv_size = crypt.key_size(); Yes Yes No No
Filetype Filetype File that may contain secrets Django configuration file No No Yes No

Insecure

Permission File permission
File may have dang.
Permissions int err_code = chmod(filePath, 0664); Yes Yes No No

Insecure
method

Insecure function Function can be vulnerable Use of insecure and deprecated function (mktemp). Yes Yes No No
Insecure module Module can be vulnerable Pickle can be unsafe when used to deserialize untrusted data Yes No No No
Depricated
library Library no longer supported

The pyCrypto library and its module atfork are no longer actively
maintained Yes No No No

Internet Insecure conn.
Dangerous internet
connections

Requests call with verify=False disabling SSL certificate checks,
security issue. Yes No No No

Attack

Injection

Insecure input
Dangerous handling of user
input Use of unsafe yaml load. Allows instantiation of arbitrary objects. Yes Yes No No

SQL injection Hardcoded SQL expressions
Possible SQL injection vector through string-based query
construction. Yes No No No

XSS
XML attack Dangerous XML library

Using xmlrpclib to parse untrusted XML data is known to be
vulnerable. Yes No No No

XSS vulnerability Dangerous library usage By default, jinja2 sets autoescape to False. Yes No No No

Research Design: Graph Formulation

• Interaction Graph
§ An interaction graph G = (U ∪ R, E) is a user-repository bipartite graph, where each edge 𝑒 = (𝑢, r, 𝑡) ∈ E

represents the introduction of a vulnerability

• Interactions
§ Given the user set U and repository set R, sequential interactions between users and repositories can be

organized as ordered set E = {(𝑢𝑘, r𝑘, 𝑡𝑘)}𝑛𝑘=1 , where 𝑢𝑘 ∈ U, r𝑘 ∈ R and 0 = 𝑡0 ≤ 𝑡1 ≤ 𝑡2 ≤. . .≤ 𝑡𝑛 ≤ 𝑇
§ Each interaction may be associated with a vector 𝒇(𝑢𝑘, r𝑘, 𝑡𝑘)
§ Time range of sequential interactions can be normalized to [0, 1], thus we have 𝑡0 = 𝑡1 = 0 and 𝑡𝑛 = 𝑇 = 1.

• Intuition
§ We represent vulnerabilities as edges such that the downstream task, i.e., link prediction, can predict the

introduction of vulnerabilities
§ The features of the nodes, i.e., users and repositories capture the properties that would influence the

introduction of vulnerabilities, such as activity levels, cumulative number of vulnerabilities introduced at
time t, programming language, etc. (Lazarine et al. 2020)

14

Research Design: Graph Formulation

• Observable Graph
§ Observable graph at time 𝑡 is the subgraph with edges, i.e., interactions, happened before time t.

§ The adjacency matrix of the observable graph at time 𝑡 ∈ (𝑡𝑘, 𝑡𝑘+1) is denoted by 𝑨𝑘 = [0 𝑩𝑘
𝑩⊤

𝑘 0] where 𝑩𝑘

∈ ℜ|U|×|R| is the bi-adjacency matrix; element 𝑩𝑘,𝑢r denotes the number of interactions between 𝑢 and r
before time 𝑡𝑘+1, i.e.,
𝑩𝑘,𝑢r = |{(𝑢′, r ′, 𝑡 ′) ∈ E|𝑢′ = 𝑢 ∧ r ′ = r ∧ 𝑡 ′ < 𝑡𝑘+1}|.

• Temporal Embedding of Interaction Graph
§ The goal of temporal embedding is to learn a function 𝒙 : (U ∪ R) × [0,𝑇] → ℜ𝑑 that reflects the continuous

evolution of users and repositories over time.
§ 𝒙(𝑢, 𝑡) : 𝑑-dimensional embeddings of user 𝑢 at time t
§ 𝒙(r, 𝑡) : 𝑑-dimensional embeddings of repository r at time t

15

Research Design: Graph Formulation and Features

The selected features can be categorized by the element of the interaction that impacts the introduction of
the vulnerability:

• User-related features: The experience, and previous activities of the developers, as well as the frequency
and severity of the vulnerabilities introduced influence the propensity of a developer introducing a
vulnerability. These factors are operationalized by considering the number of repositories owned,
comment activities, a cumulative sum of the vulnerabilities and associated severity before the
interaction.

• Repository-related features: Characteristics of the repositories, such as the language, its popularity, the
number of developers collaborating on it, the number of pre-existing vulnerabilities, as well as pre-
existing vulnerabilities and their nature influence the propensity of vulnerabilities being introduced to a
repository. These factors are operationalized by the number of stars, open issues, comments, as well as
the number and type of pre-existing vulnerabilities.

• Interaction-related features: The severity of the vulnerability would influence the propensity of
vulnerability introduction. For instance, the incidence of low-severity vulnerabilities is higher than high-
severity vulnerabilities.

16

17

Research Design: Graph Formulation and Features
Category Feature Description Rationale Reference Example

Nodal
Features: User

Repositories Owned The number of repositories owned by a user. Captures developer experience Bao et al. 2019 5

Repositories Starred The number of repositories starred by a user. Captures developer activity Bao et al. 2019 5

Cumulative Comments Cumulative number of comments made by a user. Captures developer activity Bao et al. 2019 30

Public Repositories The number of public repositories starred by a user. Captures developer activity Bao et al. 2019 5

Cumulative Vulnerabilities Cumulative vulnerabilities before interaction Risk carried by developer Lazarine et al. 2019 30

Cumulative Severity Score Cumulative severity score of vulnerabilities introduced Risk severity carried by developer Lazarine et al. 2019 50

Nodal
Features:

Repositories

Language The primary language of the repository. Vulnerabilities are language
specific

Bao et al. 2019 Python

Fork Whether the repository is forked. Captures novel development Bao et al. 2019 1

Count of Open Issues The number of open issues at the time of data collection. Measure of collaboration and
activity

Bao et al. 2019 10

Stars Number of stars that a repository has. Measure of popularity Bao et al. 2019 10

Watches Number of times a repository has been watched. Measure of popularity Bao et al. 2019 10

Forks Number of times a repository has been forked. Measure of popularity Bao et al. 2019 10

Pull requests Number of pull requests for the repository. Measure of popularity Bao et al. 2019 10

Size The size of the repository. Captures functionality Bao et al. 2019 5000

Cumulative Vulnerabilities Cumulative vulnerabilities before interaction Risk carried by repository Lazarine et al. 2019 30

Cumulative Severity Score Cumulative severity score of vulnerabilities introduced Risk severity carried by repository Lazarine et al. 2019 50

Edge Features Vulnerability Severity Severity of vulnerability Nature of vulnerability associated
with specific commit

Lazarine et al. 2019 1 (one
hot)

Table 4. Features potentially affecting vulnerability introduction, categorized by graph components

18

Proposed SeCoPE: Weighted Continuous Propagation Unit

• GOAL: What 𝑋 𝑡 (𝑡 ∈ 𝑡!, 𝑡!$#) will be, given 𝑋 𝑡!
+ , before the

next interaction

• Node representations at time t: 𝑋 𝑡 = 𝑋 𝑡𝑘
+	 +	∫%!

% ℎ	𝑑𝜏 where the
function ℎ is a GNN-based function to model continuous
propagation and evolution (CGNN)

• a (spectral radius) controls the extent of impact of the center node
on its neighbors

 𝐿𝑘 = 𝒂′	(𝐼 + 𝐷!
""#𝐴!𝐷!

""#)

where 𝐴!	is the adjacency matrix of the observable graph at time (𝑡 ∈
𝑡!, 𝑡!$#), 𝑫! is the degree matrix and 𝛼 ∈ (0, 1) is a parameter

controlling the spectral radius of 𝑳𝑘
• Thus, we have the following GNN:

𝑑
𝑑𝑡
𝑿 𝑡 = 𝑳𝒌 	− 𝑰 𝑿 𝒕 + 𝑬, (𝑡 ∈ 𝑡!, 𝑡!$#)

• Intuition: Users have differential impact
based on their relative position and influence
in the network

• The knowledge, information and code from
highly influential users would be referenced
more: greater impact of influential developers
on codebases, and influential codebases on
developers

• The extent of influence on neighboring nodes
can be captured using centrality measures

• Eigenvector centrality can capture the
transitive influence/ relative prestige score
with respect to the entire network, reflecting
the hierarchical structures within
organizations

Evaluation

19

Experiment Justification Methods Description References Evaluation
Metrics*

1

SeCoPE against
RNN-based

methods

Recurrent neural network
models are commonly used
to train nodal embeddings

for link prediction

JODIE Coupled recurrent neural network model; learns
embedding trajectories of two types of nodes

(e.g., users and repositories)

Kumar et al.
2019; Zhang
et al. 2021

Accuracy,
Precision,
Recall, F1-

ScoreCoPE Modeling continuous propagation and evolution

2

SeCoPE against
Attention-based

methods

Evaluate attention-based
methods that account for

neighboring nodes’
attributes

DyREP Temporal attention layer to capture the neighbors'
interactions

Trivedi et al.
2019; Xu et

al. 2020;
Rossi et al.

2020

TGN “Memory” module to update node embeddings
TGAT Attention layer to efficiently aggregate temporal-

topological neighborhood features

The gold standard dataset is the result of the vulnerability assessment (introduction of vulnerability).

Precision is an important metric because the costs of False Positive is high. In vulnerability introduction prediction, an
interaction that will not introduce a vulnerability has been identified as vulnerability introduction.

F1-score is an important metric for comparing models, as it is not sensitive to data imbalance.

80% of the timestamps are used for training, 10% for validation, and 10% for testing.

Results

20

Dataset Method Accuracy Precision Recall F1-Score

EXPERIMENT 1
NCAR JODIE 0.569** 0.54** 0.634** 0.556**

CoPE 0.910** 0.657** 0.663** 0.660**
seCoPE 0.959 0.764 0.704 0.733

EXPERIMENT 2
NCAR TGN 0.589** 0.562** 0.913 0.692**

DyREP 0.473** 0.413** 0.383** 0.33**
TGAT 0.585** 0.556** 0.884** 0.681**

seCoPE 0.959 0.764 0.704** 0.733

Key Observations:
• seCoPE outperforms state-of-the-art RNN-based dynamic graph deep

learning
• We perform a one-sided t-test to check for statistical significance and

compare each method with the best performing method, i.e., seCoPE
for all metrics.

• 16.2% increase for precision for NCAR.

Table 5. Results ** : p < 0.01

Figure 7. Precision and F1-Score for
Experiment 1

0.
54

0.
41

3 0.
65

7

0.
76

4

0.
55

6

0.
33

0.
66 0.
73

3

0.3
0.5
0.7
0.9

JODIE DyREP CoPE seCoPE

Precision F1-Score

Figure 8. Precision and F1-Score for
Experiment 2

0.
56

2

0.
55

6

0.
76

4

0.
69

2

0.
68

1

0.
73

3

0.3

0.8

TGN TGAT seCoPE

Precision F1-Score

Case Study: Provision of Personalized and Timely Security Trainings

21

• To demonstrate the practical value of seCoPE, we conduct a case study illustrating the timely identification of
high-risk actors it enables.

• The case study demonstrates how seCoPE can be utilized by various stakeholders to identify individual
developers such that personalized trainings can be delivered

• Personalized security trainings will better engage developers and reduce vulnerability incidence due to human
error

Identification of Actors
and Personalized

Intervention
Interaction Graph Construction and

SeCoPE Embedding GenerationVulnerability ScanningGitHub Collection

Figure 13. Case Study

Case Study: Provision of Personalized and Timely Security Trainings

22

• For whom is the research significant?
• Managed Security Service Provider (MSSP): Monitoring and management of security devices and systems is often

outsourced to MSSP’s, who can provide personalized security awareness trainings.
• Internal SOC: An information security team that monitors, detects and analyzes events on the network or system

to prevent and resolve issues, and can conduct internal security awareness trainings.

• How is the research significant?
• Instrumental benefits: Enabling stakeholders to identify high risk actors for targeted security awareness trainings,

optimal assignment of developers to repositories, as input in developer scorecards.

• How is the research operationalized?
The following steps can be performed by security analysts at MSSP’s or within organizations:
1. Collect the GitHub repositories for the organization.
2. Conduct a vulnerability assessment at the commit-level to obtain vulnerabilities introduced by each user.
3. Generate an interaction graph.
4. Train the model, using seCoPE to generate risk profiles (nodal embeddings) for users and repositories.
5. Create user-repository pairs for varying periods of time. For any given developer and repository, the introduction of a

vulnerability can be predicted over the given time period.

Case Study: Provision of Personalized and Timely Security Trainings

23

• To illustrate the identification of developers, we run the seCoPE model for the first 25% of the dataset. The
predictions made by the model are then used to hypothesize about the subsequent training efficacy.

• We plot the number of low severity vulnerabilities (CWE-119/CWE-120/CWE-362/CWE-190) introduced by user
“nief” into Cyverse repositories over time.

• We can see that within a category of vulnerabilities, vulnerability introduction can be used to predict future behavior.
• When run on the first 25% of the dataset, the seCoPE model is able to successfully predict the encircled vulnerability,

i.e., commit #cd22f58.

0

2

4

6

8

10

12

14

16

0 50000000 100000000 150000000 200000000

Nu
m

be
r o

f M
ed

iu
m

 S
ev

er
ity

 V
ul

ne
ra

bi
lit

ie
s

In
tr

od
uc

ed

Timestamp

User: nief; Dataset Cyverse

Commit: cd22f58,
Timestamp: 88361353

Figure 14. Vulnerability Introduction by User nief

Case Study: Provision of Personalized and Timely Security Trainings

24

• CWE 119/ 120 can lead to potential memory overflows, CWE-362 can lead to attackers opening malicious files on the
device, and CWE-120 can lead to buffer overflows when copying.

• If targeted security training is provided to user before time 97547292, the introduction of the vulnerabilities in the
highlighted area can potentially be mitigated.

0

2

4

6

8

10

12

14

16

0 50000000 100000000 150000000 200000000

Nu
m

be
r o

f M
ed

iu
m

 S
ev

er
ity

 V
ul

ne
ra

bi
lit

ie
s

In
tr

od
uc

ed

Timestamp

User: nief; Dataset Cyverse

Commit: cd22f58,
Timestamp: 88361353

Figure 15. Vulnerability Introduction by User nief

Conclusion and Future Directions

Implications for practice:
• Reduce the incidence of vulnerabilities
• Efficiently utilize training resources
• Investment in human capital through workforce development

Several promising directions for future research:
• This design artifact can be deployed in a field experiment to compare the user perceptions

and long-term efficacy of using targeted vs. non-targeted trainings.
• Future research can contextualize the proposed link prediction approach to identify

awareness and training needs at different granularities, e.g., developers, teams, or
departments, or in different contexts, e.g., technologies or projects

• The predictive model can be improved by incorporating data available to the firm that
could impact the propagation of knowledge, such as communication logs and prior
trainings

25

Thank you!

Questions or Comments?

_
Agrim Sachdeva
Kelley School of Business, Indiana University
agsach@iu.edu

26

mailto:agsach@iu.edu

References

Al-Rubaye, A., and Sukthankar, G. 2020. "Scoring Popularity in Github," 2020 International Conference on Computational Science and Computational Intelligence (CSCI):
IEEE, pp. 217-223.

Alfadel, M., Costa, D. E., and Shihab, E. 2021a. "Empirical Analysis of Security Vulnerabilities in Python Packages," 2021 IEEE International Conference on Software Analysis,
Evolution and Reengineering (SANER): IEEE, pp. 446-457.

Alfadel, M., Costa, D. E., Shihab, E., and Mkhallalati, M. 2021b. "On the Use of Dependabot Security Pull Requests," 2021 IEEE/ACM 18th International Conference on
Mining Software Repositories (MSR), pp. 254-265.

Balcilar, M., Renton, G., Héroux, P., Gaüzère, B., Adam, S., & Honeine, P. (2020, July). Spectral-designed depthwise separable graph neural networks. In Proceedings of Thirty-
seventh International Conference on Machine Learning (ICML 2020)-Workshop on Graph Representation Learning and Beyond (GRL+ 2020).

Bidoki, N. H., Schiappa, M., Sukthankar, G., and Garibay, I. 2020. " Modeling Social Coding Dynamics with Sampled Historical Data," Online Social Networks and Media (16),
p. 100070.

Bruna, Joan, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. "Spectral networks and locally connected networks on graphs." arXiv preprint arXiv:1312.6203 (2013).
Gong, Q., Zhang, J., Chen, Y., Li, Q., Xiao, Y., Wang, X., and Hui, P. 2019. "Detecting Malicious Accounts in Online Developer Communities Using Deep Learning,"

Proceedings of the 28th ACM International Conference on Information and Knowledge Management, pp. 1251-1260.
Gonzalez, D., Zimmermann, T., and Nagappan, N. 2020. "The State of the Ml-Universe: 10 Years of Artificial Intelligence &Amp; Machine Learning Software Development on

Github," in: Proceedings of the 17th International Conference on Mining Software Repositories. Seoul, Republic of Korea: Association for Computing Machinery, pp. 431–
442.

Goyal, P., and Ferrara, E. 2018. "Graph Embedding Techniques, Applications, and Performance: A Survey," Knowledge-Based Systems (151), pp. 78-94.
Grieco, G., Grinblat, G. L., Uzal, L., Rawat, S., Feist, J., and Mounier, L. 2016. "Toward Large-Scale Vulnerability Discovery Using Machine Learning," Proceedings of the

Sixth ACM Conference on Data and Application Security and Privacy, pp. 85-96.
Guo, Q., Chen, S., Xie, X., Ma, L., Hu, Q., Liu, H., Liu, Y., Zhao, J., and Li, X. 2019. "An Empirical Study Towards Characterizing Deep Learning Development and

Deployment across Different Frameworks and Platforms," 2019 34th IEEE/ACM International Conference on Automated Software Engineering (ASE): IEEE, pp. 810-822.

27

References
Guo, Z., Tang, L., Guo, T., Yu, K., Alazab, M., and Shalaginov, A. 2021. " Deep Graph Neural Network-Based Spammer Detection under the Perspective of Heterogeneous

Cyberspace," Future Generation Computer Systems (117), pp. 205-218.
Kumar, S., Zhang, X., and Leskovec, J. 2019. " Predicting Dynamic Embedding Trajectory in Temporal Interaction Networks," Proceedings of the 25th ACM SIGKDD

International Conference on Knowledge Discovery & Data Mining), pp. 1269-1278.
Lazarine, B., Samtani, S., Patton, M., Zhu, H., Ullman, S., Ampel, B., and Chen, H. 2020. "Identifying Vulnerable Github Repositories and Users in Scientific

Cyberinfrastructure: An Unsupervised Graph Embedding Approach," 2020 IEEE International Conference on Intelligence and Security Informatics (ISI)), pp. 1-6.
Lazarine, B., Zhang, Z., Sachdeva, A., Samtani, S., and Zhu, H. 2022. "Exploring the Propagation of Vulnerabilities from Github Repositories Hosted by Major Technology

Organizations," Proceedings of the 15th Workshop on Cyber Security Experimentation and Test, pp. 145-150.
Lü, L., and Zhou, T. 2011. "Link Prediction in Complex Networks: A Survey," Physica A: Statistical Mechanics and its Applications (390:6), pp. 1150-1170.
Oostema, P., and Franchetti, F. 2021. "Leveraging High Dimensional Spatial Graph Embedding as a Heuristic for Graph Algorithms," 2021 IEEE International Parallel and

Distributed Processing Symposium Workshops (IPDPSW): IEEE, pp. 539-547.
Pakhira, M. K., Bandyopadhyay, S., and Maulik, U. 2004. "Validity Index for Crisp and Fuzzy Clusters," Pattern recognition (37:3), pp. 487-501.
Sedova, M. 2017. "Comparing Educational Approaches to Secure Programming: Tool Vs.{Ta}," Thirteenth Symposium on Usable Privacy and Security (SOUPS) 2017, July 12–

14, 2017, Santa Clara, California.
Shahapure, K. R., and Nicholas, C. 2020. "Cluster Quality Analysis Using Silhouette Score," 2020 IEEE 7th International Conference on Data Science and Advanced Analytics

(DSAA): IEEE, pp. 747-748.
Shahid, W. B., Aslam, B., Abbas, H., Khalid, S. B., and Afzal, H. 2022. "An Enhanced Deep Learning Based Framework for Web Attacks Detection, Mitigation and Attacker

Profiling," Journal of Network and Computer Applications (198), p. 103270.
Shaji, E., and Subramanian, N. 2021. "Assessing Non-Intrusive Vulnerability Scanning Methodologies for Detecting Web Application Vulnerabilities on Large Scale," 2021

International Conference on System, Computation, Automation and Networking (ICSCAN): IEEE, pp. 1-5.
Sonnenburg, S., Rätsch, G., Henschel, S., Widmer, C., Behr, J., Zien, A., Bona, F. d., Binder, A., Gehl, C., and Franc, V. 2010. "The Shogun Machine Learning Toolbox," The

Journal of Machine Learning Research (11), pp. 1799-1802.
Stanton, B., Theofanos, M. F., Prettyman, S. S., and Furman, S. 2016. "Security Fatigue," IT Professional (18:5), pp. 26-32.
Vance, A., Eargle, D., Jenkins, J. L., Kirwan, C. B., and Anderson, B. B. 2019. " The Fog of Warnings: How Non-Essential Notifications Blur with Security Warnings " Fifteenth

Symposium on Usable Privacy and Security (SOUPS 2019)), pp. 407-420.
Velickovic, P., Fedus, W., Hamilton, W. L., Liò, P., Bengio, Y., and Hjelm, R. D. 2019. "Deep Graph Infomax," ICLR (Poster) (2:3), p. 4.
Von Krogh, G., and Von Hippel, E. 2006. "The Promise of Research on Open Source Software," Management Science (52:7), pp. 975-983.

28

