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Introduction: Software Vulnerabilities Due to Human Error

• Introduction of several vulnerabilities is caused by human error 
• Most software vulnerabilities are mistakes, not malicious attacks 1

• Critical-severity vulnerability make it through code review just as easily as 
low-severity ones 2

• Vulnerabilities typically go undetected for 218 weeks (over four years) 
before being disclosed (Fig. 1)

• Context: Open Source and GitHub
• Open-source code is vital to the global economy; services and technology 

from banking to healthcare; > $100 billion impact (Fig. 1)

• Many scientific CIs and their users host and share their research source 
code on Social Coding Repositories (SCR) such as GitHub

• Susceptible due to distributed development; evolving risks; zero-day 
vulnerabilities

• “Shifting left” is an important mitigation strategy 
• Early detection, or the prediction of the introduction of vulnerabilities 

by users

2

Figure 1. 
Lifecycle of a 
vulnerability 3

Sources:  1: https://www.synopsys.com/software-integrity/resources/analyst-reports/open-source-security-risk-analysis.html
                2: https://blog.gitguardian.com/state-of-secrets-sprawl-2021/
                3. State of the Octoverse, GitHub, 2020

https://www.synopsys.com/software-integrity/resources/analyst-reports/open-source-security-risk-analysis.html
https://blog.gitguardian.com/state-of-secrets-sprawl-2021/
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Code-first 
• DevSecOps-enabled: Integrated vulnerability scanning or detection systems
• Dependabot, Dependency Review, Dependency Graph, CodeQL and Secret Scanning 
Identify vulnerabilities after they have been committed to code 
Work at the repository-level, and do not focus on users or provide feedback
Require extensive configuration 

User-first 
• Developer security awareness training 

More effective in reducing vulnerabilities than embedded tools in interfaces (Sedova, 2017)
Quickly loses efficacy if non-targeted
Causes training fatigue

Shift from detecting vulnerabilities in code after they have been introduced to predicting 
user errors and prevent introduction of vulnerabilities

Current Solutions
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Vulnerability Introduction Prediction
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Vulnerabilities can be introduced and 
propagated by users

Vulnerability introduction can be impacted by:
• Direct and indirect exposure
• Propagation of knowledge and information 
between developers

Objective: Predict the introduction of a 
vulnerability by a user into a repository.

Can enable proactive risk management, e.g., 
targeted security awareness trainings 

KNOWLEDGE 
FLOW

Fig. 3. Example Vulnerability Introduction Prediction 
within the organization Cyverse
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• Key Observations:
1. Most recent studies do not focus on prediction of vulnerabilities, or incorporate a vulnerability assessment on code, overlooking 

the incidence and nature of vulnerabilities.
2. Although GitHub as a time-evolving interaction network, studies do not capture the temporal dynamics need to be captured 

and modelled, reducing the accuracy of the data representation, and therefore, the underlying phenomenon.
3. The results of vulnerability analysis contains valuable information such as severity levels, which most studies omit.

Year Author Platform/ Dataset Focus Method User 
Profiling

Vulnerability 
Assessment

Temporal 
Dynamics

2022 Shahid et al. Network Metadata Hybrid CNN + Cookie Analysis CNN Yes No No

2022 Zerouali et al. GitHub: npm, RubyGems Vulnerability dependency networks Empirical No Yes Yes

2021 Shaji et al. GitHub: organizations Non-intrusive vulnerability detection Probabilistic model No Yes No

2021 Rabheru et al. GitHub: Wordpress Novel vulnerability detection GRU + GCN No Yes No

2021 Mazeura-Rozo 
et al.

Source Code 
Representations

Comparing DL to ML models, e.g., 
Google’s AutoML

Empirical No Yes No

2020 Lazarine et al. GitHub Cluster attributes and vulnerabilities TADW Yes 4 scanners No

2020 Zhang et al. GitHub Malicious blockchain repository 
detection

HIN No 3 scanners No

2019 Gong et al. GitHub Detection of malicious online accounts Phased LSTM Yes No No

2019 Meli et al. GitHub Data leakage Regular Expressions No 1 scanner No

Table 1. Literature Review of studies that use GitHub data for vulnerability analysis or modeling users 
Note: CNN: Convolutional Neural Network, TADW: Text Attributed Deep Walk, HIN: Heterogenous Information Network, LSTM:  Long short-term memory, GRU: Gated Recurrent Unit, GCN: Graph 

Convolutional Network

Literature Review: Vulnerability Management for SCR



Literature Review: Dynamic Graph Representation Learning 

7

Dynamic Graph Representation Learning 

Evenly-Spaced Snapshot Sequence Unevenly-Spaced Snapshot Sequence

Temporal Random Walk
Temporal Point Processes

Time-Encoded Sequential Models
Deep Continuous-Time Processes

Graph Summarization
Matrix Factorization

RBM-Based Temporal Models
RNN-Based Temporal Models

Attention-Based Temporal Models

GitHub as a time-evolving interaction network wherein individual edges and nodes are inserted or deleted over 
time in a continuous manner.    

Based on the characteristics of our data, i.e., a time-stamped dynamic interaction network, we review dynamic 
graph representation learning techniques. 

By representing users and repositories as nodes, and vulnerabilities as links between the nodes, the task of link 
prediction would help us predict the introduction of vulnerabilities

Figure 4. Dynamic Graph Representation Learning
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User embeddings: vulnerability propagation score/ propensity to introduce vulnerabilities
Repository embeddings: Risk level, or vulnerability level 

The propagation of information is modeled as non-linear node dynamic evolution between 
interactions, which captures the knowledge and communication between users that impacts the 
introduction of a vulnerability. 

Information 
Propagation 

1. Continuous Propagation 2. Discrete Update



Sequence Methods Algorithm Contribution Discrete/ 
Continuous

Information 
Propagation

Concurrent 
Interactions

Authors Year

Evenly-
Spaced 

Snapshot 
Sequence

Dynamic Latent 
Space Models

DSNL Forward-backward algorithm on the Markov chain over timesteps Discrete No No Sarkar and 
Moore

2005

Incremental SVD TIMERS Set the  restart  time  to reduce accumulated  error
Discrete

No No Zhang et al. 2018

Unevenly-
Spaced 

Snapshot 
Sequence

Random Walk 
Based Methods

CTDNE Temporal random walks that contain a sequence of edges in order Continuous No No Nguyen et al. 2018

DNE Extension for the Skip-gram based network embedding methods Discrete No No Du et al. 2018

DynamicTriad Learn dynamic embeddings by modeling the triadic closure Discrete No No Zhou et al. 2018

Graph Neural 
Network 
Methods

DyRep Temporal attention layer to capture the neighbors' interactions Continuous No No Trivedi et al. 2019

JODIE Coupled recurrent neural network model; learns embedding 
trajectories of two types of nodes (e.g. users and items)

Continuous No No Kumar et al. 2019

CoPE Modeling continuous propagation and evolution Continuous Yes Yes Zhang et al. 2021

TGAT Attention layer to  efficiently aggregate temporal-topological 
neighborhood features

Continuous No Yes Xu et al. 2020

TGN “Memory” module to update node embeddings Continuous No Yes Rossi et al. 2020
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Table 2. Dynamic Graph Representation Learning Methods; Note:  DSNL: Dynamic Social Network In Latent Space; TIMERS: Theoretically Instructed Maximum-Error-bounded Restart of 
SVD; CTDNE: Continuous-Time Dynamic Network Embeddings; GNN: Graph Neural Networks (GNNs); DyRep: Dynamic Representation; CoPE: Continuous Propagation and Evolution

Literature Review: Dynamic Graph Representation Learning

• Key Observations:
1. Prevailing dynamic graph representation Learning for continuous-time interaction graphs are neural-network 

based methods, which can further be classified into RNN-based (DyREP, JODIE, CoPE), or Attention-based 
(TGAT, TGN)

2. CoPE can capture the evolution of nodal embeddings based on the propagation of information, i.e., the impacts 
of the users on neighboring users and repositories between interactions



Research Questions

Extant security education, training, and awareness (SETA) research does not comment on open-
source software security awareness trainings, or the timing of the training to be delivered. The 
personalization and the timing of delivery are important to security training outcomes. 

Baseline link prediction using dynamic graph methods does not consider the severity of the 
vulnerabilities when they spread, or the relative influence of users. 

Based on these research gaps, we pose the following research questions:

1. How can we predict the introduction of vulnerabilities by users into repositories while accounting 
for information propagation?

2. How can we adapt dynamic graph  link prediction methods to incorporate rich feature sets for users, 
repositories, and vulnerabilities, and capture the relative influence of high-risk repositories and actors?

10



Research Question

Shortcomings in existing approaches necessitate the need for personalized and targeted training

The prediction of vulnerabilities in source code will allow the creation of risk profiles, 
and enable proactive and personalized security awareness training.

How can we extend and adapt CoPE to incorporate rich feature sets for users, repositories, and 
vulnerabilities, and capture the relative influence of high-risk repositories and actors?

11



3. Proposed SeCoPE 
Model
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Figure 6. Research Design and Testbed

Research Design

4. Evaluation
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Scanning

Repository 
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176 users, 77 repos, 
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2. Graph Formulation

Feature Extraction
User, Repository, 

Interaction

G = (U, R, E)
E: Vulnerability 

Introduction
Features: 𝒇(𝑢𝑘, r𝑘, 𝑡𝑘 )



Research Design: Data Collection
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NCAR:  Federally funded R&D center for climate science, atmospheric chemistry, solar-terrestrial 
interactions; founded in 1956; collaborates with 115 universities; 176 users, 77 repositories, 3326 
vulnerabilities

We selected four open-source vulnerability assessment scanners based on language categories of 
vulnerabilities they scan for, languages, usability and age, i.e., Bandit, Flaw Finder, Gitrob, Trufflehog

Table 3. Key Vulnerabilities Returned from Scanners

Type Sub-category Vuln. Description Example Bandit Flaw Finder Gitrob Trufflehog

Secret

Secret
Secret A potential password/key 739b6afec22ff801a132fc89200a0614953211cd Yes No Yes Yes
Password Word password found irods://user:pass@host:port/destination No No Yes Yes

Cryptography Weak crypto. Insufficient crypto. Method iv_size = crypt.key_size(); Yes Yes No No
Filetype Filetype File that may contain secrets Django configuration file No No Yes No

Insecure

Permission File permission
File may have dang. 
Permissions int err_code = chmod( filePath, 0664 ); Yes Yes No No

Insecure 
method

Insecure function Function can be vulnerable Use of insecure and deprecated function (mktemp). Yes Yes No No
Insecure module Module can be vulnerable Pickle can be unsafe when used to deserialize untrusted data Yes No No No
Depricated 
library Library no longer supported

The pyCrypto library and its module atfork are no longer actively 
maintained Yes No No No

Internet Insecure conn.
Dangerous internet 
connections

Requests call with verify=False disabling SSL certificate checks, 
security issue. Yes No No No

Attack

Injection

Insecure input
Dangerous handling of user 
input Use of unsafe yaml load. Allows instantiation of arbitrary objects. Yes Yes No No

SQL injection Hardcoded SQL expressions
Possible SQL injection vector through string-based query 
construction. Yes No No No

XSS
XML attack Dangerous XML library

Using xmlrpclib to parse untrusted XML data is known to be 
vulnerable. Yes No No No

XSS vulnerability Dangerous library usage By default, jinja2 sets autoescape to False. Yes No No No



Research Design: Graph Formulation

• Interaction Graph
§ An interaction graph G = (U ∪ R, E) is a user-repository bipartite graph, where each edge 𝑒 = (𝑢, r, 𝑡 ) ∈ E 

represents the introduction of a vulnerability

• Interactions
§ Given the user set U and repository set R, sequential interactions between users and repositories can be 

organized as ordered set E = {(𝑢𝑘, r𝑘, 𝑡𝑘 )}𝑛𝑘=1 , where 𝑢𝑘 ∈ U, r𝑘 ∈ R and 0 = 𝑡0 ≤ 𝑡1 ≤ 𝑡2 ≤. . .≤ 𝑡𝑛 ≤ 𝑇 
§ Each interaction may be associated with a vector 𝒇(𝑢𝑘, r𝑘, 𝑡𝑘 ) 
§ Time range of sequential interactions can be normalized to [0, 1], thus we have 𝑡0 = 𝑡1 = 0 and 𝑡𝑛 = 𝑇 = 1.

• Intuition
§ We represent vulnerabilities as edges such that the downstream task, i.e., link prediction, can predict the 

introduction of vulnerabilities
§ The features of the nodes, i.e., users and repositories capture the properties that would influence the 

introduction of vulnerabilities, such as activity levels, cumulative number of vulnerabilities introduced at 
time t, programming language, etc. (Lazarine et al. 2020)

14



Research Design: Graph Formulation

• Observable Graph
§ Observable graph at time 𝑡 is the subgraph with edges, i.e., interactions, happened before time t. 

§ The adjacency matrix of the observable graph at time 𝑡 ∈ (𝑡𝑘, 𝑡𝑘+1) is denoted by 𝑨𝑘 = [	 0 𝑩𝑘
𝑩⊤

𝑘 0 	] where 𝑩𝑘 

∈ ℜ|U|×|R| is the bi-adjacency matrix; element 𝑩𝑘,𝑢r denotes the number of interactions between 𝑢 and r 
before time 𝑡𝑘+1, i.e., 
𝑩𝑘,𝑢r = |{(𝑢′, r ′, 𝑡 ′) ∈ E|𝑢′ = 𝑢 ∧ r ′ = r ∧ 𝑡 ′ < 𝑡𝑘+1}|.

• Temporal Embedding of Interaction Graph
§ The goal of temporal embedding is to learn a function 𝒙 : (U ∪ R) × [0,𝑇 ] → ℜ𝑑 that reflects the continuous 

evolution of users and repositories over time. 
§ 𝒙(𝑢, 𝑡 ) : 𝑑-dimensional embeddings of user 𝑢 at time t 
§ 𝒙(r, 𝑡 ) : 𝑑-dimensional embeddings of repository r at time t

15



Research Design: Graph Formulation and Features

The selected features can be categorized by the element of the interaction that impacts the introduction of 
the vulnerability:

• User-related features: The experience, and previous activities of the developers, as well as the frequency 
and severity of the vulnerabilities introduced influence the propensity of a developer introducing a 
vulnerability. These factors are operationalized by considering the number of repositories owned, 
comment activities, a cumulative sum of the vulnerabilities and associated severity before the 
interaction. 

• Repository-related features: Characteristics of the repositories, such as  the language, its popularity, the 
number of developers collaborating on it, the number of pre-existing vulnerabilities, as well as pre-
existing vulnerabilities and their nature influence the propensity of vulnerabilities being introduced to a 
repository. These factors are operationalized by the number of stars, open issues, comments, as well as 
the number and type of pre-existing vulnerabilities. 

• Interaction-related features: The severity of the vulnerability would influence the propensity of 
vulnerability introduction. For instance, the incidence of low-severity vulnerabilities is higher than high-
severity vulnerabilities. 

16
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Research Design: Graph Formulation and Features
Category Feature Description Rationale Reference Example

Nodal 
Features: User

Repositories Owned The number of repositories owned by a user. Captures developer experience Bao et al. 2019 5

Repositories Starred The number of repositories starred by a user. Captures developer activity Bao et al. 2019 5

Cumulative Comments Cumulative number of comments made by a user. Captures developer activity Bao et al. 2019 30

Public Repositories The number of public repositories starred by a user. Captures developer activity Bao et al. 2019 5

Cumulative Vulnerabilities Cumulative vulnerabilities before interaction Risk carried by developer Lazarine et al. 2019 30

Cumulative Severity Score Cumulative severity score of vulnerabilities introduced Risk severity carried by developer Lazarine et al. 2019 50

Nodal 
Features: 

Repositories

Language The primary language of the repository. Vulnerabilities are language 
specific

Bao et al. 2019 Python

Fork Whether the repository is forked. Captures novel development Bao et al. 2019 1

Count of Open Issues The number of open issues at the time of data collection. Measure of collaboration and 
activity 

Bao et al. 2019 10

Stars Number of stars that a repository has. Measure of popularity Bao et al. 2019 10

Watches Number of times a repository has been watched. Measure of popularity Bao et al. 2019 10

Forks Number of times a repository has been forked. Measure of popularity Bao et al. 2019 10

Pull requests Number of pull requests for the repository. Measure of popularity Bao et al. 2019 10

Size The size of the repository. Captures functionality Bao et al. 2019 5000

Cumulative Vulnerabilities Cumulative vulnerabilities before interaction Risk carried by repository Lazarine et al. 2019 30

Cumulative Severity Score Cumulative severity score of vulnerabilities introduced Risk severity carried by repository Lazarine et al. 2019 50

Edge Features Vulnerability Severity Severity of vulnerability Nature of vulnerability associated 
with specific commit

Lazarine et al. 2019 1 (one 
hot)

Table 4. Features potentially affecting vulnerability introduction, categorized by graph components
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Proposed SeCoPE: Weighted Continuous Propagation Unit

• GOAL: What 𝑋 𝑡 (𝑡 ∈ 𝑡!, 𝑡!$#) will be, given 𝑋 𝑡!
+ , before the 

next interaction

• Node representations at time t: 𝑋 𝑡 = 𝑋 𝑡𝑘
+	 +	∫%!

% ℎ	𝑑𝜏 where the 
function ℎ is a GNN-based function to model continuous 
propagation and evolution (CGNN)

• a (spectral radius) controls the extent of impact of the center node 
on its neighbors

 𝐿𝑘 = 𝒂′	(𝐼 + 𝐷!
""#𝐴!𝐷!

""#) 

where 𝐴!	is the adjacency matrix of the observable graph at time (𝑡 ∈
𝑡!, 𝑡!$#), 𝑫! is the degree matrix and 𝛼 ∈ (0, 1) is a parameter 

controlling the spectral radius of 𝑳𝑘
• Thus, we have the following GNN: 

𝑑
𝑑𝑡
𝑿 𝑡 = 𝑳𝒌 	− 𝑰 𝑿 𝒕 + 𝑬, (𝑡 ∈ 𝑡!, 𝑡!$#)

• Intuition: Users have differential impact 
based on their relative position and influence 
in the network

• The knowledge, information and code from 
highly influential users would be referenced 
more: greater impact of influential developers 
on codebases, and influential codebases on 
developers

• The extent of influence on neighboring nodes 
can be captured using centrality measures

• Eigenvector centrality can capture the 
transitive influence/ relative prestige score 
with respect to the entire network, reflecting 
the hierarchical structures within 
organizations



Evaluation
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Experiment Justification Methods Description References Evaluation 
Metrics*

1

SeCoPE against 
RNN-based 

methods

Recurrent neural network 
models are commonly used 
to train nodal embeddings 

for link prediction

JODIE Coupled recurrent neural network model; learns 
embedding trajectories of two types of nodes 

(e.g., users and repositories)

Kumar et al. 
2019; Zhang 
et al. 2021

Accuracy, 
Precision, 
Recall, F1-

ScoreCoPE Modeling continuous propagation and evolution

2

SeCoPE against 
Attention-based 

methods

Evaluate attention-based 
methods that account for 

neighboring nodes’ 
attributes

DyREP Temporal attention layer to capture the neighbors' 
interactions

Trivedi et al. 
2019; Xu et 

al. 2020; 
Rossi et al. 

2020

TGN “Memory” module to update node embeddings
TGAT Attention layer to  efficiently aggregate temporal-

topological neighborhood features

The gold standard dataset is the result of the vulnerability assessment (introduction of vulnerability). 

Precision is an important metric because the costs of False Positive is high. In vulnerability introduction prediction, an 
interaction that will not introduce a vulnerability has been identified as vulnerability introduction. 

F1-score is an important metric for comparing models, as it is not sensitive to data imbalance.

80% of the timestamps are used for training, 10% for validation, and 10% for testing. 



Results
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Dataset Method Accuracy Precision Recall F1-Score

EXPERIMENT 1
NCAR JODIE 0.569** 0.54** 0.634** 0.556**

CoPE 0.910** 0.657** 0.663** 0.660**
seCoPE 0.959 0.764 0.704 0.733

EXPERIMENT 2
NCAR TGN 0.589** 0.562** 0.913 0.692**

DyREP 0.473** 0.413** 0.383** 0.33**
TGAT 0.585** 0.556** 0.884** 0.681**

seCoPE 0.959 0.764 0.704** 0.733

Key Observations:
• seCoPE outperforms state-of-the-art RNN-based dynamic graph deep 

learning 
• We perform a one-sided t-test to check for statistical significance and 

compare each method with the best performing method, i.e., seCoPE 
for all metrics. 

• 16.2% increase for precision for NCAR.

Table 5. Results ** : p < 0.01

Figure 7. Precision and F1-Score for 
Experiment 1
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Case Study: Provision of Personalized and Timely Security Trainings
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• To demonstrate the practical value of seCoPE, we conduct a case study illustrating the timely identification of 
high-risk actors it enables. 

• The case study demonstrates how seCoPE can be utilized by various stakeholders to identify individual 
developers such that personalized trainings can be delivered

• Personalized security trainings will better engage developers and reduce vulnerability incidence due to human 
error

Identification of Actors 
and Personalized 

Intervention 
Interaction Graph Construction and

SeCoPE Embedding GenerationVulnerability ScanningGitHub Collection

Figure 13. Case Study 



Case Study: Provision of Personalized and Timely Security Trainings
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• For whom is the research significant?
• Managed Security Service Provider (MSSP): Monitoring and management of security devices and systems is often 

outsourced to MSSP’s, who can provide personalized security awareness trainings. 
• Internal SOC: An information security team that monitors, detects and analyzes events on the network or system 

to prevent and resolve issues, and can conduct internal security awareness trainings. 

• How is the research significant? 
• Instrumental benefits: Enabling stakeholders to identify high risk actors for targeted security awareness trainings, 

optimal assignment of developers to repositories, as input in developer scorecards. 

• How is the research operationalized?
The following steps can be performed by security analysts at MSSP’s or within organizations: 
1. Collect the GitHub repositories for the organization. 
2. Conduct a vulnerability assessment at the commit-level to obtain vulnerabilities introduced by each user.
3. Generate an interaction graph.
4. Train the model, using seCoPE to generate risk profiles (nodal embeddings) for users and repositories. 
5. Create user-repository pairs for varying periods of time. For any given developer and repository, the introduction of a 

vulnerability can be predicted over the given time period. 



Case Study: Provision of Personalized and Timely Security Trainings
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• To illustrate the identification of developers, we run the seCoPE model for the first 25% of the dataset. The 
predictions made by the model are then used to hypothesize about the subsequent training efficacy.  

• We plot the number of low severity vulnerabilities (CWE-119/CWE-120/CWE-362/CWE-190) introduced by user 
“nief” into Cyverse repositories over time.

• We can see that within a category of vulnerabilities, vulnerability introduction can be used to predict future behavior. 
• When run on the first 25% of the dataset, the seCoPE model is able to successfully predict the encircled vulnerability, 

i.e., commit #cd22f58.  
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Case Study: Provision of Personalized and Timely Security Trainings
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• CWE 119/ 120 can lead to potential memory overflows, CWE-362 can lead to attackers opening malicious  files on the 
device, and CWE-120 can lead to buffer overflows when copying. 

• If targeted security training is provided to user before time 97547292, the introduction of the vulnerabilities in the 
highlighted area can potentially be mitigated. 
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Conclusion and Future Directions

Implications for practice:
• Reduce the incidence of vulnerabilities 
• Efficiently utilize training resources
• Investment in human capital through workforce development

Several promising directions for future research:
• This design artifact can be deployed in a field experiment to compare the user perceptions 

and long-term efficacy of using targeted vs. non-targeted trainings.
• Future research can contextualize the proposed link prediction approach to identify 

awareness and training needs at different granularities, e.g., developers, teams, or 
departments, or in different contexts, e.g., technologies or projects

• The predictive model can be improved by incorporating data available to the firm that 
could impact the propagation of knowledge, such as communication logs and prior 
trainings
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Thank you!

Questions or Comments?

_
Agrim Sachdeva
Kelley School of Business, Indiana University
agsach@iu.edu 
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